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Part I.
Introduction
1. Introduction
Steganography is the science of hiding the fact that some communication is taking place.
In general encryption, encoding and decoding are not required to accomplish steganog-
raphy. However, encryption serves as a layer of protection when steganography fails.

The first objective of steganography is hiding the existence of data exchange between
two parties. In order to achieve this beyond any mere manipulation of the mean or
carrier, the existence of information exchange must be kept away from the reach of
human radar sensors. Second, steganography must cause little or no impact on the car-
riers structure. The latter guarantees to prevent suspicious of some sort of manipulation.
Third, carriers must outweigh message existence, i.e., it must be robust. The medium
should withstand a certain level of modification before data existence is detected. Fi-
nally, the capacity of the medium should allows to handle a certain level of information
before hidden information is detected.

Steganography is studied taking under consideration the capabilities of detection of the
information transferred. This include steganalysis, the techniques and methods used to
detect steganography. The importance of the performance of steganography will lead,
either from simple to more complex methods of detection. The importance of embed-
ding matches the efficiency of the detection technique.

There are two problems in steganalysis: (1) detecting the existence of a hidden message
and (2) decoding the message. As terrorist groups have been known to use steganogra-
phy in planning their attacks, this has become an important problem of national security.
This technical report is only concerned first, with embedding techniques and second, the
problem of hidden message detection using steganalysis.

The approach is to statistically analyse the least significant bit(s) of each color dimen-
sion of each pixel to look for some kind of a pattern. In the absence of a hidden message
this should look like random noise. Addition of a hidden message will affect the entropy
of the data. This difference should be detectable by comparing the entropy of unaltered
picture files with the entropy of files with embedded steganography. Many software
are available in the market for steganography and steganalysis. However, in order to
better understand steganography we have developed simple procedures for embedding.
The programming tools used for this purpose are mainly the R-Language because of the
broad scope and strength in the statistical analysis. A second programming language
used was C# for its well structured user interface developer tools.

We have outlined the steps to proceed with the development of our research. These
are follows:



• Obtain sample jpegs from the Internet or other source

• Import these sample files as data files into R Language

• Statistically analyse least significant bits.

• Use steganography to hide messages in a sample of jpeg files.

• Import as a data file into R language and statistically analyse the least significant
bits of the jpeg files with known hidden messages.

• Compare with original file in terms of entropy.

2. History
There are many instances with particular purposes where steganography has been used.
In particular there are three instances that are mentioned generally mentioned.

From the ancient times, the Greek historian Herodotus writes of a nobleman, Histaeus,
who needed to communicate with his son-in-law in Greece. He shaved the head of one
of his most trusted slaves and tattooed the message onto the slave’s scalp. When the
slave’s hair grew back the slave was dispatched with the hidden message.

During the Second World War the Microdot technique was developed by the Germans.
Information, especially photographs, was reduced in size until it was the size of a typed
period. Extremely difficult to detect, a normal cover message was sent over an insecure
channel with one of the periods on the paper containing hidden information.

Today steganography is mostly used on computers with digital data being the carri-
ers and networks being the high speed delivery channels.

Definitions are important to understand concepts and we may say that steganography
is the art of hiding the fact that communication is taking place, by hiding information in
other information or mean.

2.1. Steganography concepts
Although steganography is an ancient subject the modern formulation is being focus
in two ideas, passive and active. An example of a warden who has knowledge of the
communication between two inmates. This view was proposed by Simmons, where two
inmates wish to communicate in secret to hatch a plan to escape from prison. Their
communication passes through the warden who will throw them in solitary confinement
should she suspect any convert communication.

The warden, who is free to examine all communication exchanged between the inmates,
can either be passive or active.



• passive: A passive warden simply examines the communication to try and deter-
mine if it potentially contains secret information. If she suspects a some com-
munication to contain hidden information, a passive warden takes note of the
detected covert communication, reports this to some outside party and lets the
message through without blocking it.

• active: An active warden, on the other hand„ will try to alter the communica-
tion with the suspected hidden information deliberately, in order to remove the
information.

Knowing the existence of some communication between two parties allows you to ei-
ther, alter the information contained and passed through the medium or just let it pass
through.

2.2. Steganography Vs Cryptography
There are many differences between steganography and cryptography. None of them
need of each other to execute its purpose. However, both do coexist and furthermore,
they become a powerful security tool when used together.

Steganography differs from cryptography in the sense that where cryptography focuses
on keeping the contents of a message secret, stagenography focuses on keeping the ex-
istence of a message secret.

Steganography and cryptography are both ways to protect information from unwanted
parties but neither technology alone is perfect and can be compromised.

Once the presence of hidden information is revealed or even suspected, the purpose
of steganography is partly defeated.

The strength of steganography can thus be amplified by combining it with cryptography.

Two other technologies that are closely related to steganography are watermarking and
fingerprinting. These technologies are mainly concerned with the protection of intellec-
tual property, thus the algorithms have different requirements than steganography.

2.3. Different kinds of steganography
There are four types of categories of steganography. Almost all digital file formats can
be used for steganography, but the formats that are more suitable are those with a high
degree of redundancy. Redundancy can be defined as the bits of an object that provide
accuracy far greater than necessary for the object’s use and display. The redundant bits
of an object are those bits that can be altered without the alteration being detected easily.
Image and audio files especially comply with this requirement, while research has also
uncovered other file formats that can be used for information hiding.

• Text: An obvious method was to hide a secret message in evry nth letter of every
word of a text message.



• Images: Given the large amount of redundant bits present in the digital represen-
tation of an image, images are the most popular cover objects for steganography.

• Audio / Video: A different technique unique to audio steganography is masking,
which exploits the properties of the human ear to hide inforamtion unnoticeable.
A faint, but audible, sound becomes inaudible in the presence of another louder
audible sound. This property creates a channel in which to hide information.

• Protocol: The term protocol steganography refers to the technique of embedding
information within messages and network control protocols used in network trans-
mission. In the layers of the OSI network model there exist convert channels
where steganography can be used.



Part II.
Steganography
3. Images and Significance of Bits
The main object of Steganography is the fact that communication is being occurring
with out attracting attention. Information is being exchanged hidden, but from the in-
terested parties, i.e. the sender and the receiver. However, once the communication is
been compromised, steganography simply fails.

Information is exchanged between two or more parties through a communication medium.
These ranges from text, images, videos and more complex ones. In our research the
mean of communication to be used is related to images, in particular we are going to
use jpeg types. The reason for this is that are the most common and currently used
image format. Furthermore, its configuration is simple to manipulate.

3.1. Image definition
Images are very useful means to hide messages (embedding). The mechanism of em-
bedding is accomplished by manipulating certain bits in the binary color representation.
A monochrome picture is depicted in different scales of gray including black and white.
Each pixel is a byte (a string of 8 bits). From black to white we have 28 = 256 dif-
ferent tones of gray. These range from white, 00000000, through black, 11111111. A
given message with proper size can be embedded in a cover (image) by manipulating
the bits on each pixel. Let us assume that in a particular pixel the gray is represented by
00001111. By switching the second bit we obtain a new binary string, 01001111. The
latter change has modified the original picture.

Colour pictures or RGB images are set in each pixel with a binary string representation
of length 24. The first 8 bits represent the red color, green by the next 8 bits and blue by
the last 8 bits. Each pixel ranges in colors from white to black, including combinations
of red, green and blue shades. In total, there are 2563 = 16, 777, 216 possibilities of
color shades. We show below three sets of 8 bits-string. Each set represents a color.
From an original image, say

00001010 00110101 00011110

we can change the 4th bit from left to right, obtaining

00011010 00100101 00001110

The latter by no means is equivalent to steganography. As we will see later on there is
a big difference between changing the least significant bit (lsb) and changing the most
significant bit.



3.2. Image Compression
When working with large images, we start having problems handling large files. Some
sort of compression is necessary in order to better handle these images. There are two
types of compression: lossy and lossless. An example of the first type of compression
technique is JPEG (Joint Photographic Experts Group) image format. For the second
type, we have the GIF (Graphical Interchange Format) and the 8-bit BMP (Microsoft
Windows Bitmap file). In the first case loss of information takes place, while in the
second the integrity of the original information remains.

The process of jepg compression requires the calculation of discrete cosine transforms
coefficients and a quantization matrix. The latter leads to the level of compression of
the image.

3.3. Least Significant Bit (LSB)
The object of steganography is to prevent suspicion upon the action of communication,
regardless the mean being used. Small changes in the tone of gray will in general, be
imperceptible to the human eye. The Least Significant Bit (LSB) is a simple approach
to modify an image, while at the same time making the change imperceptible to the
human eye. By considering the redundant bits (least significant bits), imperceptible
changes take place by changing the 8th (from left to right) bit in the string of eight bits.
For example, by changing 00001111 to 00001110, we have applied the least significant
bit technique.

3.4. Significant Bit Image Depiction
Steganography fails to comply in its purpose at the very moment when the existence
of the message has been compromised. Even when steganography is not infallible, its
strength lies entirely on the non-knowledgeable of its content, whatever it is. When the
mean of communication is a picture from which a text or a message can be extracted,
its infallibility is directly related to the manipulation of the pixels. In particular, by
manipulating the LSB, any message is safe as long as it remains imperceptible to the
human eye. The following pictures show the level of visual perception in relation to the
change of bits in each pixel for each channel (color) in each pixel. An image is com-
pared before and after the LSB technique has been applied. The simple procedure of
switching all LSB for each pixel in each channel produces a different image that cannot
be distinguished from the original one. Figure 1 depicts side by side two pictures. The
original picture from the left has been altered using the LSB technique resulting in the
picture from the right. We are unable to perceive any changes in the image after the
LSB technique.

Figure 2 shows two images. From the left is the resultant image after switching bit
number 2 in each pixel for each channel. The image from the right is obtained by
switching bit number 3. In the latter image a gradual change in color is being noticed.



Changes made from the bits number 4 and 5 are shown in Figure 3, left and right,
respectively. The manipulation is evident in both pictures. Note that colors are distorted
and degraded.

Finally, the switch of bit number 8 in all channels for every pixel makes the modifi-
cation evident. So it is that it can be perceived the by human eye. These bits (number
8) are extremely significant, and if steganography is the intended purpose, would be
unwise to choose bit number 8. Below, we show the original image side by side with
the 8th-bit-switch depiction.

The importance in using the LSB is addressed to preserve the objective of steganog-
raphy, i.e., to hide the fact that communication is taking place.

Figure 1: Original Depiction (left); LSB Depiction (right)

Figure 2: Switch of bit number 2 (left); Switch of bit number 3 (right)

Figure 3: Switch of bit number 4 (left); Switch of bit number 5 (right)



Figure 4: Switch of bit number 6 (left); Switch of bit number 7 (right)

Figure 5: Original depiction (left); Switch of bit number 8 (right)

4. Steganography Ad Hoc Methods
There are probably a finite number of ways of embedding a message in an image. The
embedding is possible according to the length of the message and the dimensions of the
image. Because secrecy is the objective of Steganography, the act of communicating
must be kept hidden. Below we will discuss some embedding methods. These are not
the most efficient, but are used to accomplish one of the task of Steganography, embed-
ding a message.

We may consider various strategies for embedding. The latter must be imperceptible
to human eye. The technique must take place sequentially, at least for now. In other
words, there is no randomness (apparent) in the way a message is embedded, there exist
an order. One general method is to embed a message line by line. For this, we may dis-
cuss many approaches. We are going to limit ourselves to three methods, line-by-line,
uniformly distributed and analogously to the LSB method, LSBP, or the less significant
bits per pixel.

4.1. Linear Ordered Embedding
4.1.1. Line-by-Line Linear Embedding

Probably the most obvious and simple method of embedding is line-by-line. With ap-
propriate message length and image dimensions, this strategy will be achieved. The
length of the message must be within the total number of bytes (8 bits) contained by the
image along the three channels. In other words, if l is the length of the message and
m× n× 3 the dimensions of the image, l ≤ 3mn must be satisfied.

The general technique is very simple. The message is written by channels, from left
to right and from top to bottom. By selecting a channel, say k, either you may start from



the most top-left position of that color-matrix, (1, 1, k), or from some point (i, j, k) in
that matrix. Continue embedding the message from that point on, from left to right and
from top to bottom.

The graph below shows the trace of the embedded message when this is written.

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5

5,1 5,2 5,3 5,4 5,5

he algorithm starts with the embedding in a channel. Remember that a channel is pre-
cisely the matrix of color’s shade. Let us assume that we are starting at the top-left most
pixel. In a monochrome picture we are dealing with different shades of gray, including
white and black. We start determining if the length of the message do not exceed the
dimensions of the matrix. If the length of the message is feasible, in the sense that the
length fits in the matrix dimensions, then we substitute each pixel represented by 8 bits,
by the binary representation of each character in the message. We continue doing these
substitution linearly, until the end of the message. These substitutions take place one
pixel after another, skipping none.

Algorithm

Let M a matrix of dimension r × c. Let s = {s1, s2, ..., sl} the message to be em-
bedded of length |s| = l, i.e. the number of characters in the sentence. Let l ≡ k mod c
with 0 ≤ k < c. Let f = l−k

r
+ 1, the minimum number of rows needed to write the

message. In the most simple case, consider an image, a monochrome type of dimension
r × c. Let partition our message s = {s∗1, s∗2, ..., s∗f−1, s

∗
f} in segments of equal length

|s∗i | = c, for i = 1, 2, ..., f − 1, with the exception of the last one which is bounded,
|s∗f | ≤ c.

Given the matrix

M =


t1
t2
...
tr

 .
The rows {t1, ..., tf−1} are substituted by {s∗1, s∗2, ..., s∗f−1}. The last segment is embed-
ded in row tf , so that the first |s∗f | elements of tf are those of s∗f . Let us label the latter
row by t∗f . Our covert matrix is then given by



MC =



s∗1
s∗2
...
t∗f
tf+1

...
tr


.

An algorithm is built so that from the matrix M , one obtain the matrix MC . The al-
gorithm, even when is simple, it is inefficient. The embedding is accomplish by the
substitution of a character code (ascii or binary representation) into the binary of the
pixel. The following algorithm has been built for monochrome images embedding.

function(M, s)
{

for(i in 1:f )
{

if( i < f )
{
ti = s∗i

}
else
{
t(f,|s∗f |) = s∗f

}
}
return M

}

4.1.2. Uniform Spread Embedding (USE)

The uniform spread of a message along the matrix M is another form of linear embed-
ding. The message is spread over the matrix in a orderly fashion. Given a message s
and a matrix M , with dimension r × c the length of the message |s| ≤ rc. Let us take
the floor k = brc/|s|c. Starting from the most top-left pixel, if one character sm is to
be substituted at pixel (i, j), i, j = 1, 2, . . . , n, the next character will be embedded at
(φr(i, j, k), φc(i, j, k)). The functions φr and φc return the corresponding indices of the
pixel from which embedding is going take place.

Algorithm

In R we can implement the algorithm as follow. Consider the array a = a1a2...ar,
obtained from the rows of the matrix M , by putting the rows am sequentially from top
to bottom and from left to right. Note that |a| = rc. Starting from 1, we are going to
substitute sequentially a character of the message s in a every k steps. A new matrix



N is built with the resulting substitutions. Using the R-language we may accomplished
our goal as follows.

function(M, s)
{

a = c(t(M ))
k = floor(|a|/|s|)
a[seq(1,|a|, k)] = s
N = matrix(a,nrow=r,ncol=c,byrow=TRUE)
return N

}

The functions φr and φc provide the indices for the next embedding. The function φr is
outlined as follows.

function(i, j, k)
{

if(j + k <= c)
{

return i
}
else
{

return i+ 1
}

}

For the function φc we have

function(i, j, k)
{

if(j + k <= c)
{

return j + k
}
else
{

return (j + k − 1)%c+ 1
}

}

4.1.3. Pixel LSBP

Another technique for embedding is the LSBP (less significant bits per pixel). This take
each character in a message s, and spread it over the less significant bits of a pixel. In the



case of a monochrome image, this technique becomes the line-by-line linear technique.
However, in a RGB image the binary representation of a character is split in combina-
tions of 3,3,2 or 3,2,3 or 2,3,3 bits, to be distributed in channels Red, Green and Blue,
respectively.

Consider the character si, from the message s. Its binary representation (x1, x2, ..., x8)
will be embedded in the pixel (v, w). This pixel has three bytes

00101011 01101111 11001000

containing each color shade. By substituting our character and using configuration 3,3,2,
we obtain

00101x1x2x3 01101x4x5x6 110010x7x8

Algorithm

Using R coding we make the embedding per pixel. In the algorithm below the pixel
p and a message s (in a binary representation) are sent for the embedding.

function(p, s)
{

pr < −toBin(p[v, w, 1])
pg < −toBin(p[v, w, 2])
pb < −toBin(p[v, w, 3])
pr[6 : 8] < −s[1 : 3]
pg[6 : 8] < −s[4 : 6]
pb[7 : 8] < −s[7 : 8]
p[v, w, 1] < −toInt(pr)
p[v, w, 2] < −toInt(pg)
p[v, w, 3] < −toInt(pb)
return p

}

The latter algorithm is not complete, of course. This is part of a sequel of steps. This
could be used with a modification of either the line-by-line or the USE techniques.

4.1.4. LSB

All the techniques shown so far suffer of a great flaw, they make steganography to fail.
With a wide and large monitor, 32-in maybe or larger, a line of dots may be seen across
the lines. These dots are the change of color shades caused by the embedding. The
change is visible and evident, violating the essence of the purpose of steganography.

In order to prevent this flaw, we are going to use the LSB technique. In the case of



the monochrome image, the binary representation of a character is distributed along 8
pixels. The following character is spread over the next 8 pixels, and so on. The weak-
ness of this technique is that the length of the message cannot be considerable large. In
this case we have space constraints. The message is forced not to exceed |s|/3 ≤ 3rc,
or better put |s| ≤ 3rc in a RGB picture, and |s| ≤ rc in a monochrome image.

Algorithm

We can combine a number of techniques that lead us to a considerable level of effi-
ciency.

function(M, s)
{

N = c(toBin(c(t(M ))))
m = c(toBin(s))
#k is a stepping constant
N [seq(8,length(N), k)] = m
N = matrix(N ,nrow=r,ncol=c,byrow=TRUE)
return N

}

The above algorithm shows the technique of spreading and the use of the LSB.

4.2. Diagonal
Different from linear techniques, our embedding can be traced diagonally. We are going
to mention four main techniques and its variants, Top-To-Bottom-Right-To-Left, Top-
To-Bottom-Left-To-Right, Bottom-To-Top-Right-To-Left, Bottom-To-Top-Left-To-Right.
In total there are different cases.

4.2.1. Top-To-Bottom-Right-To-Left-Left Corner

We can start our embedding according to the following sequence of indices {(1,1), (1,2),
(2,1), (1,3), (2,2), (3,1),...}. The following diagram shows more details.



1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

4.2.2. Top-To-Bottom-Left-To-Right-Left Corner

We can start our embedding according to the following sequence of indices {(1,1), (2,1),
(1,2), (3,1), (2,2), (1,3),...}. The following diagram shows more details.

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

4.2.3. Top-To-Bottom-Left-To-Right-Right Corner

We can start our embedding according to the following sequence of indices {(1,c), (1,c-
1), (2,c), (1,c-2), (2,c-1), (3,c),...}. The following diagram shows more details.



1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

4.2.4. Top-To-Bottom-Left-To-Right-Right Corner

We can start our embedding according to the following sequence of indices {(1,c), (2,c),
(1,c-1), (3,c), (2,c-1), (1,c-2),...}. The following diagram shows more details.

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

4.2.5. Bottom-To-Top-Left-To-Right-Left Corner

We can start our embedding according to the following sequence of indices {(r,1), (r-
1,1), (r,2), (r-2,1), (r-1,2), (r,3),...}. The following diagram shows more details.



1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

4.2.6. Bottom-To-Top-Right-To-Left-Left Corner

We can start our embedding according to the following sequence of indices {(r,1), (r,3),
(r,2), (r-1,1), (r-1,2), (r-2,1),...}. The following diagram shows more details.

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

4.2.7. Bottom-To-Top-Left-To-Right-Right Corner

We can start our embedding according to the following sequence of indices {(r,c), (r,c-
1), (r-1,c), (r,c-2), (r-1,c-1), (r-2,c),...}. The following diagram shows more details.



1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

4.2.8. Bottom-To-Top-Right-To-Left-Right Corner

We can start our embedding according to the following sequence of indices {(r,c), (r-
1,c), (r,c-1), (r-2,c), (r-1,c-1), (r,c-2),...}. The following diagram shows more details.

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9



Part III.
Steganalysis
5. Discrete Cosine Transform (DCT)

5.1. DCT coefficients in general
The Discrete Cosine Transform (DCT) is used to transform values from successive 8× 8
pixels from the image (this being set to appropiate values) to a block of DCT coefficients
of same dimensions. The DCT coefficients can be obtained using a Type II DCT table
given by the equation below for an integer N

D(i, j) =
1√
2N

C(i)C(j)
N−1∑
x=0

N−1∑
y=0

m(x, y)dN(x, i)dN(y, j) (1)

where

dN(a, b) = cos

[
(2a+ 1)bπ

2N

]
and C(n) =

{ 1√
2N

if n = 0

1 if n > 0.

}
(2)

andm(x, y) are the entries from a matrixm. Type II is the most frequently used in many
applications.

5.2. DCTs of a 8× 8 block matrix
In the particular case when N = 8, for a block 8 × 8, the equation is reduced to

D(i, j) =
1

4
C(i)C(j)

7∑
x=0

7∑
y=0

m(x, y)dN(x, i)dN(y, j) (3)

with

dN(a, b) = cos

[
(2a+ 1)bπ

16

]
and C(n) =

{
1
4

if n = 0
1 if n > 0.

}
(4)

The matrix T obtained from equation (3) is shown below.



This matrix is an orthogonal matrix, i.e., T−1 = T ′ or TT ′ = T ′T = I , where I is the
identity matrix.

The implementation of the equation above for a given image (gray scale), M, by taking
a 8× 8 block Mxy the DCT coefficients matrix (for a block) is given by

Dxy = TMxyT
′

A block of a given dimension (8×8) contains values from ranging from 0 to 255. Since
DCT domain runs over symmetric values above the origin, we level off our block by
128. The latter provides the symmetry required upon the images’ values.

These values are called the un-quantized DCT coefficients and our matrix is in the DCT
domain.

5.3. DCT coefficients of an image
In general we can obtain DCT coefficients for any clock of any dimension. One as-
pect to achieve the DCT coefficients matrix over the whole image is by partitioning
the image in equal dimensional blocks. The latter task results in many loops and time
consuming. We can construct block diagonal matrices that will lead us to the DCT co-
efficients image. Two matrices will be used, one for the left Tl and one for the right Tr
multiplications. The latter are given by

Tl =


T 0 0 . . . 0
0 T 0 . . . 0

0 0 T
. . . ...

...
... . . . . . . 0

0 0 . . . 0 T


l

and Tr =


T 0 0 . . . 0
0 T 0 . . . 0

0 0 T
. . . ...

...
... . . . . . . 0

0 0 . . . 0 T


r

, (5)

where
l =

# of rows
8

and r =
# of columns

8
.

Tl and Tr are block diagonal matrices which diagonal region are filled with the matrix
T . There are precisely l and r of such block matrix T , in Tl and Tr, respectively.

Let us assume that the image M has appropriate values, i.e., level off from [0,255],
with dimensions multiple of 8. The DCT coefficients matrix of the image

D = TlMT ′r, (6)

results in consecutive DCT coefficients blocks of dimension 8×8. The matrix D and M
are of the form

D =


D11 D12 . . . D1r

D21 D22 . . . D2r
...

... . . . ...
Dl1 Dl2 . . . Dlr

 and M =


M11 M12 . . . M1r

M21 M22 . . . M2r
...

... . . . ...
Ml1 Ml2 . . . Mlr

 . (7)

where Dxy = TMxyT
′, D = (Dxy)xy and M = (Mxy)xy.



5.4. Quantization Index Modulation (QIM)
Basic principles

Consider the case of embedding a message m in a host signal x ∈ <N . This host
signal can be a vector of pixel values of Discrete Cosine Transform coefficients from
an image. We wish to embed at a rate of Rm bits per dimension (bits per host signal
sample) so we can think of m as an integer, where

m ∈ {1, 2, . . . , 2NRm}.

An embedding function s(x,m), maps the host signal x and the information to embed
m, to a composite signal s ∈ <N . The embedding should not degrade the host signal,
so that we have a minimum level or some distortion measure D(s, x) between the com-
posite and host signals.

There are two main or general classes to distinguish embedding methods from. First
we have the host-interference nonrejecting methods and second, the host-interference
rejecting methods.

Host-interference nonrejecting methods have the general property that the host signal
is effectively a source of interference in a system. The simplest of such methods have
purely additive embedding functions of the form

s(x,m) = x+ w(m)

where w(m) is typically a pseudo-noise sequence, often called as additive spread-
spectrum method. It is very common to express w(m) = a(m)v, where v is a unit-
energy spreading vector and a(m) is a scalar function of the message.

5.5. Properties of an ensemble function
The embedding should not degrade the host signal up to a point that the embedding can
be capture. Therefore, a distortion measure D(s, x) between the composite and host
signals should be relatively small. One might measure, in theory the difference between
the host signal and the composite.

For example, one might consider the square-error distortion measure

D(s, x) =
1

N
||s− x||2. (8)

Even more, we can express the composite function as the sum of the host signal and
nuisance, i.e.,

s(x,m) = x+ e(x,m). (9)



Nuisance might be expressed as

e(x,m) , s(x,m)− x (10)

Now, to develop the QIM concept the mapping s(x,m) can be viewed as an ensemble
of functions of x, indexed by m. If the strength of the embedding function is to cause
small distortion, then we may state the identity-approximate property

s(x,m) ≈ x, ∀m.

The fact that the system needs to be robust to perturbations suggests that the points in
the range of one function in the ensemble should be far away in some sense from the
points in the range of any other function.

Now, in reality, we don’t know much about the original information, but the mapping s,
i.e., either few or no information regarding the source values x and m.

The ideal would be the function ranges to have no common ground or intersection.
Otherwise, some values of s will lead to some undetermined m. Precisely, the non-
intersection property leads to host-signal interference rejection.

The non-intersection property along with the approximate-identity property, which sug-
gests that the ranges of each of the functions "cover" the space of possible (or at least
highly probable) host-signal values x, suggests that the functions be discontinuous.

Quantizers are just such a class of discontinuous, approximate-identity functions. QIM
refers to embedding information by first modulating an index or sequence of indices
with the embedded information and then quantizing the host signal with the associated
quantizer or sequence of quantizers.

These quantizers are analysed from the probabilistic scope. For the following slides
we will develop the probabilistic framework. The latter will allows us to define tests
and non-parametric structures for stego image identification.

Let us define the probability framework. First, let χ the random space of possible values
for the the host signal x or cover. Let us define the random variable X defined over a
random space χ, with pmf Px. Given that X is a random vector, let us assume it is i.i.d..
Let us define the xq quantized image obtained by plain quantization (image with no hid-
den message). Furthermore, let us define the QIM-stego, xQIM, which is the quantized
image with a hidden message. Given the cover x let us also define the DM-stego, xDM,
stego using the DM (dither modulation). The design of a parametric hypothesis test
requires the probability mass function of x, xq, xQIM and xDM. We are going to define
all probability mass functions in terms of the pmf of x.

Now, in the case of the plain quantization let us define the quantizer output, xk as

xk = k∆∗, ∆∗ > 0. (11)



Consider the following sample space. The fact that it is a sample space is to be estab-
lished.

Λ∆∗ = {xk : xk = k∆∗, k ∈ Z}. (12)

Here Z is the set of integers.

5.6. Calculating probabilities for quantized values
Let us define the random variable A with pmf, Pxq and range equals to Λ∆∗. Let us
define the quantization set

χ(a,∆∗) , [a−∆∗/2, a+ ∆∗/2), a ∈ Λ∆∗ . (13)

The probability
Pxq(a) =

∑
x∈χ

Px(x)δχ(a,∆∗)(x) (14)

with indicator function

δχ(a,∆∗)(x) =

{
1 if x ∈ χ(a,∆∗),
0 if x /∈ χ(a,∆∗).

Let us now define a new choice of quantizers to hide binary data, β = {0, 1}N . Here
N is regarded as the length of a string of information (a message). We segregate the
original quantizer into 2 ordinary subsets, each with step-size ∆ = 2∆∗. Let us define
the set

χ(s,∆) = [s−∆/2, s+ ∆/2) (15)

Two association can be made. One quantizer associated with routing 1 is identical to
that as for 0, but shifted by ∆/2. Assuming the probability of 0 is equal to that of 1, we
have

PxQIM
(s) =

1

2

∑
x∈χ

Px(x)δχ(s,∆)(x) (16)

where δχ(s,∆) is the indicator function.

For dither modulation, we let D be a pseudo random variable uniformly distributed
over [−∆/4,∆/4) so that the output will cover all the values of the input, and will not
leave tell-tale signs of quantization. In this range,

PxDM
(x) =

∫ b

a

2

∆
dt =

2(b− a)

∆
=

2ε

∆
, ε = b− a, (17)

and a, b ∈ [−∆/4,∆/4]. With this dithering, any xDM is valid, subject to the granular-
ity of the system. For every received xDM there is one and only only one valid value of
d that could have made that value of xDM .



For any valid xDM ,

PxDM
(xDM) = P ({B = 0, 1} and χ(xDM ,∆) and {d required})

= P ({B = 0, 1})Px(χ(xDM ,∆))PD({d required})

= 1
2
Px(χ(xDM ,∆))2ε

∆

= ε
∆
Px(χ(xDM ,∆))

.

5.7. Effect of embedding
Let us define ni and ni∗ as the frequency of color indices before and after embedding
respectively. The relation below holds

|n2i − n2i+1| ≥ |n∗2i − n∗2i+1|, (18)

which means that the difference between adjacent frequency color values is reduced by
the embedding process. In general and clearly we can state that for n2i > n2i+1 the bits
of the hidden message change n2i to n2i+1 more often than the other way around.

5.8. Expected Value Estimate
Instead of using color frequencies, we are going to use the DCT coefficients. The dis-
tortion will be measured by the use of the χ2-test. Let ni be the frequency of DCT
coefficient i in the image. Because the test will uses the stego-image, the expected dis-
tribution y∗i for the test has to be computed from the image. As a result the arithmetic
mean is to be used, i.e,

y∗i =
n2i + n2i+1

2
(19)

to determine the empiric distribution. This average is an estimate of the expected value.
The expected distribution is compared against the observed distribution yi = n2i.

The statistic obtained has a χ2 distribution and is defined by

χ2 =
v+1∑
i=1

(yi − y∗i )2

y∗i
, (20)

where v are the degrees of freedom. Large values of χ2 suggest a nonrandom condition
or a low level of randomness. As a consequence the source is probably an original one.
The opposite, small values indicate a high degree of randomness, which is often con-
nected to encrypted hidden information.



The probability p of embedding is given by

p = Pr(X > χ2), (21)

where X ∼ χ2
v. We can compute this probability for particular regions in the image.

Now, let us partition the image in K regions with appropriate dimensions there are many
approaches to take from here. We can explore the sample mean

X̄ =

∑K
i=1 χ

2
i

K
,

with the assumption that χ2
i ∼ χ2

vi
are independent random variables with mean vi and

variance 2vi. Note that X̄ ∼ N(µ, σ2), where

µ =

∑K
i=1 vi
K

and σ2 =

∑K
i=1 2vi
K2

and that K is relatively large to induce normality. A special case can considered when
χ2
i are iid.

This new consideration defines a particular framework

µ = v and σ2 =
2v

K

6. Entropy
Let X a random variable with a set possible outcomes ΛX = {a1, . . . , aI}, with corre-
sponding probabilities PX = {p1, . . . , pI}. The entropy of X is defined by

En(X) =
∑
x∈ΛX

−Pr(x) logPr(x),

with the convention for
Pr(x) = 0, 0× log 1/0 ≡ 0

since limθ→0+ θ log 1/θ = 0.

Example 1

In an image with uniform distribution of gray-level intensity, let us define ΛX = {0, . . . , 255}.
The corresponding probability (uniform) is given by pi = 1/256 for i = 1, . . . , 256.
Therefore, (by substituting log by log2), the entropy is given by

En(X) =
∑256

i=1 Pr(xi) log2(1/Pr(xi))
= 256× 1/256× log2(256)
= 8 log2(2)
= 8.

Example 2

Analogously, in a RGB image, we can show that the entropy is 24.
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8. Appendix
Consider closed n−dimensional intervals I = {x : aj ≤ xj ≤ bj, j = 1, . . . , n} and
their volumes v(I) =

∏n
j=1(bj − aj). To define the outer measure of an arbitrary subset

E of Rn, cover E by a countable collection S of intervals Ik, and let

σ(S) =
∑
Ik∈S

v(Ik). (22)

Definition 3 (Lebesgue outer measure (or exterior measure)) The Lebesgue outer mea-
sure of E, denoted |E|e, is defined by

|E|e = inf σ(S), (23)

where the infimum is taken over all such covers S of E. Thus, 0 ≤ |E|e ≤ +∞.

Definition 4 (Lebesgue Measurable or Measurable) A subset E ⊂ Rn is said to be
Lebesgue measurable, or simply measurable, if given ε > 0, there exists an open set
G such that

E ⊂ G and |G− E|e < ε. (24)

Let f be a real-valued function defined on a set E in Rn, that is −∞ ≤ f(x) ≤ +∞,
x ∈ E. then f is called a Lebesgue measurable function on E, or simply a measurable
function, if fro every finite a, the set

{x ∈ E : f(x) > a}

is a measurable subset of Rn. We may use the notation {f > a} for {x ∈ E : f(x) >
a}.

Definition 5 (Banach Space) A setX is called aBanach space over the complex num-
bers if it satisfies the following conditions:

1. X is a linear space over the complex numbers =; that is , if x, y ∈ X and α ∈ =,
then x+ y

∫
X and αx ∈ X .

2. X is a normed space; that is, for every x ∈ X there is a non-negative number
||x|| such that

a) ||x|| = 0 if and only if x is the zero element in X .

b) ||αx|| = |α|||x|| for α ∈ =, x ∈ R.



c) ||x+ y|| ≤ ||x||+ ||y||.
If this conditions are fulfilled, ||x|| is called the norm of x.

3. X is complete with respect to its norm; that is, every Cauchy sequence in X
converges in X , or if ||xk − xm|| → 0 as k,m→∞, then there is an x ∈ X such
that ||xk − x|| → 0.

If E is a measurable subset of Rn and p satisfies 0 < p < ∞, then Lp(E) denotes the
collection of measurable functions f for which

∫
E
|f |p is finite, that is

Lp(E) =

{
f :

∫
E

|f |p < +∞
}
, 0 < p <∞. (25)

So from here we can mention L1 and L2 classes. L may be used instead of L1.

Definition 6 (Linear Functional) IfB is aBanach space (or more generally, a normed
linear space) over the real numbers, a real-valued linear functional l on B is by defini-
tion a real valued function l(f), f ∈ B, which satisfies, linearity, i.e.,

l(f1 + f2) = l(f1) + l(f2), and l(αf) = αl(f), −∞ < α <∞.

Integration is an example of a linear functional:

I(x) =

∫ b

a

x(t)dt,

where x(t) is an integrable function defined on the interval (a, b). We can defined linear
functional by using different kernels, which determine transforms properties. Integral
transforms are often used for the reduction of complexity of mathematical problems.

One of the most known and used linear functional transformations are the Fourier
Transform.

Definition 7 (Fourier Transform) For f ∈ L(R), define the Fourier transform f̂ of f
by

f̂(x) =

∫ ∞
−∞

f(t)e−itxdt, (x ∈ R). (26)

Definition 8 (Inner product) For f, g ∈ L2, the inner product of f and g is defined by

〈f, g〉 =

∫
fḡ, (27)

where ḡ denotes the complex conjugate of g. The norm of f is given by ||f ||2 = 〈f, f〉.

Definition 9 (Orthogonal and orthonormal) If 〈f, g〉 = 0, f and g are said to be
orthogonal. A set {φα}α∈A is orthogonal if any two of its elements are orthogonal.
Furthermore, {φα}α∈A is orthonormal if it is orthogonal and ||φ|| = 1.



A particular case of the Fourier transform is the following

F̂ (x) = f̂(2πx) =

∫ ∞
−∞

f(t)e−i2πtxdt. (28)

where the kernel is given by, k(x, t) = e−i2πtx, and 2πx is the angular frequency.

Early in the 1800s a French mathematician Joseph Fourier introduced what was called
the Fourier series. Given any orthonormal system {φk} for L2. If f ∈ L2, the numbers
defined by

ck = 〈f, φk〉 (29)

are called the Fourier coefficients of f with respect to {φk}. The series
∑

k ckφk is
called the Fourier series of f with respect to {φk} and is denoted by S[f ].

A system of complex-valued functions {φα(x)}, all in L2(E), is called orthogonal over
E if

〈φα, φβ〉 =

∫
E

φαφ̄β

{
= 0, α 6= β,
> 0, α = β.

(30)

Note that 〈φα, φβ〉 = 1 for all α, the orthogonal system is called normal, or orthonormal.
If {φα} is orthogonal, the system

{φα/||φα||2}

is orthonormal. ∫
E

φαφ̄β =

{
0, k 6= l,

λk > 0, k = l.
(31)

Given any complex-valued f ∈ L2(E), we call the numbers

ck =
1

λk

∫
E

fφ̄ (32)

the Fourier coefficients.
We shall now consider a special orthogonal system, the trigonometric system. This
name is given to the system of functions

eikx = cos kx+ i sin kx, k = 0,±1,±2, . . . . (33)

Note furthermore, that

1

2
,
eikx + e−ikx

2
,
eikx − eikx

2i
, . . . , k = 1, 2, . . .

are orthonormal over any intervalQ of length 2π, or what is the same thing, the functions

1

2
, cosx, sinx, . . . , cos kx, sin kx, . . . ,



are orthogonal over any interval Q of length 2π.

Note that for f ∈ L(Q) can be developed into a new Fourier series

f
1

2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx), (34)

where
a0 = (π/2)−1

∫
Q

1

2
f =

1

π

∫
Q

f, (35)

ak =
1

π

∫
Q

f(t) cos ktdt, bk =
1

π

∫
Q

f(t) sin ktdt (36)

The numbers {ak} and {bk} are called the Fourier cosine and sine coefficients of f ,
respectively.

Note that if Q = (−π, π) and f is an even function, i.e., if f(−x) = f(x), the

ak =
2

π

∫ π

0

f(t) cos ktdt, bk = 0.

Now, if f is an odd function, i.e., if f(−x) = −f(x), then

ak = 0, bk =
2

π

∫ π

0

f(t) sin ktdt.

Restricting the complex part we obtain the Fourier cosine transform (FCT), by using the
real part of the complex kernel

Re[eiwt] = cos(ωt) =
1

2

[
eiωt + e−iωt

]
. (37)

So the Fourier cosine transform of real or complex valued function f(t), which is de-
fined over non-negative values with non-negative angular frequency, ω, as

F [f ](ω) =

∫ ∞
0

f(t) cosωtdt. (38)

Now for the discrete case, a particular case of the Fourier transform is given by

f̂(n) =
N−1∑
k=0

cke
i2πkn/N (39)

where ck are Fourier coefficients defined as

ck =
1

N

N−1∑
k=0

f(n)e−i2πkn/N . (40)



This is called the Discrete Fourier transform (DFT).

The multidimensional transforms are a simple extension case of the on dimensional.
The 2-dimensional DFT is defined as

f(x) =

N1−1∑
n1=0

N2−1∑
k2=0

x(n1, n2)e
−i2π

(
n1k1
N1

+
n2k2
N2

)
, (41)

k1 = 0, . . . , N1 − 1, k2 = 0, . . . , N2 − 1.

For the discrete case, Discrete Cosine Transform (DCT) can be obtained from the
DFT. At this point we have to point out that f must be an even function, defined over
(−∞,∞), symetrically. There are four types of DCT. First defining the coefficients
matrix we have the following types.

Type I.

MI =

(
2

N

)1/2 [
kmkn cos

(mnπ
N

)]
, m, n = 0, 1, . . . , N.

Type II.

MII =

(
2

N

)1/2 [
km cos

(
m(n+ 1/2)π

N

)]
, m, n = 0, 1, . . . , N − 1.

Type III.

MIII =

(
2

N

)1/2 [
kn cos

(
(m+ 1/2)nπ

N

)]
, m, n = 0, 1, . . . , N − 1.

Type IV.

MIV =

(
2

N

)1/2 [
kn cos

(
(m+ 1/2)(n+ 1/2)π

N

)]
, m, n = 0, 1, . . . , N − 1.

where

kj =

{
1 if j 6= 0orN
1√
2

if j = 0orN.

Type II is the most frequently used in many applications.

The matrix obtained from the Type II is shown below.

Note that this matrix is an orthogonal matrix, i.e., its inverse equals its transpose. Name
the matrix in the figure above T .



Now in order to obtain DCT from a 8 × 8 matrix, M , and under the assumption that
the range of M is appropriately symmetric about the origin. The DCT matrix for M is
given by

D = TMT ′

For example, given a picture and extracting a block 8× 8, we un-normalized so that this
can bring the images values to the range [0,256]. Once this is done, the resulting un-
normalized must be level off by 128. The latter provides the symmetry required upon
the images values.

These values are called the un-quantized DCT coefficients and our matrix is in the DCT
domain.

In order to achieve the DCT matrix over the image let us define the following matri-
ces

Tl =


T 0 0 . . . 0
0 T 0 . . . 0

0 0 T
. . . ...

...
... . . . . . . 0

0 0 . . . 0 T


l

and Tr =


T 0 0 . . . 0
0 T 0 . . . 0

0 0 T
. . . ...

...
... . . . . . . 0

0 0 . . . 0 T


r

,

where l = # of rows of the image
8

and r = # number of columns
8

. There are precisely l T blocks in
the diagonal of Tl and r T blocks in the diagonal of Tr. Given an image I that has been
un-normalized and level-off, with dimensions mod 8 = 0, the matrix

D = TlIT
′
r, (42)

is the DCT matrix of the image to which the DCT method has been applied for each
8× 8 block.

9. R-Codes
In the previous section we compared an original image with different modifications, by
having a bit switched over. We have managed to accomplish this using the R-language
(2.14,2.15). We have loaded packages jpeg, ReadImage, boolfun, RGraphics and many
others. The two crucial packages were ReadImages and boolfun to use read.jpeg and
toBin, respectively. The first allows us to read an image in jpg or jpeg format. The



second one gives an integer binary representation. Another function used from boolfun
is toInt, which returns an integer from a given binary representation.

The function below, imageManipulation2, switches the ith bit for each channel in
every pixel of an image in jpeg or jpg format. When the picture is read, a 3-dimensional
array is built. Each array contains the numeric representation for each color in every
pixel. The values in this matrix are real numbers between 0 and 1. These numbers are
normalized and they are of the form n/255, where n = 0, 1, ..., 255. These number are
multiplied by 255 resulting in an integer ranging from 0 to 255, precisely 256 values.
The integers are converted to their binary representation. A particular bit is switched
over for each binary. This sequence is converted to an integer and normalized. The
resulting matrix is an image different from the original.

%x is the image
%This function switches the bit at position n
%N is the length of the binary representation
%t is a title
%normalization (division by 255)

function (x,n,N,t)
{

nrow <- dim(x)[1]
ncol <- dim(x)[2]
ncha<- dim(x)[3]
for(i in 1:ncha)
{

for(j in 1:nrow)
{

for(k in 1:ncol)
{

if(n<=N && n>=1)
{

m = x[j,k,i]*255
%toBin returns a binary representation of length N
y = toBin(m,N)
y[n] = !y[n]
%toInt returns an integer from a binary representation of a certain length
x[j,k,i] = toInt(y)/255

}
}

}
}
plot(x,main=t)
x

}

> EmbedMessageImage
function (I,m)



#######################################
#EmbedMessageImage
#This function embed a message (m) of
#suitable length in an image (I)
#The embedding is achieved from the
#index {(2,1),(2,nc)} to
#{(nr-1,1),(nr-1,nc)} for each channel
#######################################
{
#The message m is splitted in an array
s <- unlist(strsplit(m,split=NULL))
#The length is assigned to l
l <- length(s)
#A copy J of I is made
J <- I
#The dimensions are assigned to nr (rows), nc (cols), nh (channels)
nr <- dim(J)[1]
nc <- dim(J)[2]
nh <- dim(J)[3]
#n is assigned the dimension of the square where the message is to be written
n <- (nr-2)*nc
#if the length of the message is <= the total dimension of the image (including all 3
channels)
if(l<=n*nh)
{
#k is assigned the reminder n = l mod k
k <- l #f is assigned the minimum number of channels needed to embed the message
f <- (l-k)/n+1
#in the loop, the message is embeded by channel and message segment
for(i in 1:f)
{
#j is assigned the length of the message segment to be embedded
j <- n*(i<f)+k*(i==f)
#mx is assigned the message segment in a string of characters, not an array
mx <- Paste(s[(n*(i-1)+1):(n*(i-1)+j)])
#embedding per channel per corresponding message segment
J[2:(nr-1)„i] <- EmbedMessageMatrix(J[2:(nr-1)„i],mx)
}
}
#once the message has been embedded, the message length is embedded as well
EmbedMessageLength(J,l)
}

> EmbedMessageMatrix
function (x,m)
#######################################



#EmbedMessageMatrix
#This function embed a message m, in a
#matrix with dimensions (r x c). The
#embedding is achieved sequentially,
#starting at (1,1) in the matrix
#(channel) x.
#######################################
{
#The message is converted from a string to an array of characters
s <- charToInt(unlist(strsplit(m,split=NULL)))
l <- length(s)
#An un-normalized copy of x is made
y <- x*255
nr <- dim(y)[1]
nc <- dim(y)[2]
#if the length of the message is suitable we proceed
if(l<=nr*nc)
{
#k is the reminder nc = l mod k
k <- l #f is the minimum number of rows needed to embed m
f <- (l-k)/nc+1
#The message is embeded row by row
for(i in 1:f)
{
j <- k*(i==f)+nc*(i<f)
n <- (i-1)*nc
y[i,1:j] <- s[(n+1):(n+j)]
}
}
#y is normalized
y/255.0
}

> EmbedMessageLength
function (I,n)
#######################################
#EmbedMessageLength
#This function embed the length of the
#message in the image. The embedding
#is achieved by converting the length
#into a character string, "123456".
#Then, this string is splitted as an
#array of characters, "1","2",...,"6".
#The, this is converted in integers
#according to the ascii code. The
#resulting numbers are written orderly



#on the channels’ corners, accordingly
#to the following coordinates
#(1,1),(1,nc),(nr,1),(nr,nc). Here, nr
#is the number of rows and nc is the
#number of columns.
#######################################
{
J <- I*255
nr <- dim(J)[1]
nc <- dim(J)[2]
s <- unlist(strsplit(as.character(n),split=NULL))
l <- length(s)
s <- s[l:1]
for(i in 1:l)
{
if(i==1)
{
J[1,1,1] <- charToInt(s[i])
}
else if(i==2)
{
J[1,nc,1] <- charToInt(s[i])
}
else if(i==3)
{
J[nr,1,1] <- charToInt(s[i])
}
else if(i==4)
{
J[nr,nc,1] <- charToInt(s[i])
}
else if(i==5)
{
J[1,1,2] <- charToInt(s[i])
}
else if(i==6)
{ J[1,nc,2] <- charToInt(s[i])
}
else if(i==7)
{ J[nr,1,2] <- charToInt(s[i])
}
else if(i==8)
{ J[nr,nc,2] <- charToInt(s[i])
}
else if(i==9)
{ J[1,1,3] <- charToInt(s[i])



}
else if(i==10)
{ J[1,nc,3] <- charToInt(s[i])
}
else if(i==11)
{ J[nr,1,3] <- charToInt(s[i])
}
else if(i==12)
{ J[nr,nc,3] <- charToInt(s[i])
}
}
if(l<12)
{
for(k in (l+1):12)
{ if(k==1)
{ J[1,1,1] <- charToInt("0")
}
else if(k==2)
{ J[1,nc,1] <- charToInt("0")
}
else if(k==3)
{ J[nr,1,1] <- charToInt("0")
}
else if(k==4)
{ J[nr,nc,1] <- charToInt("0")
}
else if(k==5)
{ J[1,1,2] <- charToInt("0")
}
else if(k==6)
{ J[1,nc,2] <- charToInt("0")
}
else if(k==7)
{ J[nr,1,2] <- charToInt("0")
}
else if(k==8)
{ J[nr,nc,2] <- charToInt("0")
}
else if(k==9)
{ J[1,1,3] <- charToInt("0")
}
else if(k==10)
{ J[1,nc,3] <- charToInt("0")
}
else if(k==11)
{ J[nr,1,3] <- charToInt("0")



}
else if(k==12)
{ J[nr,nc,3] <- charToInt("0")
}
}
}
J/255.0
}

> ExtractMessageImage
function (I)
#######################################
#ExtractMessageImage
#This function extract a message from
#an image. It is assumed that the
#message is embedded accordingly to the
#algorithm employed in
#EmbedMessageImage.
#######################################
{
nr <- dim(I)[1]
nc <- dim(I)[2]
nh <- dim(I)[3]
l <- ExtractMessageLength(I)
n <- (nr-2)*nc
k <- l f <- (l-k)/n+1
s <- ""
for(i in 1:f)
{
j <- n*(i<f)+k*(i==f)
s <- paste0(s,ExtractMessageMatrix(I[2:(nr-1)„i],j))
}
s
}

> ExtractMessageMatrix
function (x,l)
#######################################
#ExtractMessageMatrix
#This function extract a message from
#a matrix. It is assumed that the
#message is embedded accordingly to the
#algorithm employed EmbedMessageMatrix.
#######################################
{
Paste(intToChar(c(t(x))[1:l]*255))



}

> ExtractMessageLength
function(I)
#######################################
#ExtractMessageLength
#This function extract the length from
#an image. It is assumed that the
#length of the message is embedded
#accordingly to the algorithm employed
#in EmbedMessageLength.
#######################################
{
J <- I*255
nr <- dim(J)[1]
nc <- dim(J)[2]
s <- intToChar(J[1,1,1])
s <- paste(intToChar(J[1,nc,1]),s,sep="")
s <- paste(intToChar(J[nr,1,1]),s,sep="")
s <- paste(intToChar(J[nr,nc,1]),s,sep="")
s <- paste(intToChar(J[1,1,2]),s,sep="")
s <- paste(intToChar(J[1,nc,2]),s,sep="")
s <- paste(intToChar(J[nr,1,2]),s,sep="")
s <- paste(intToChar(J[nr,nc,2]),s,sep="")
s <- paste(intToChar(J[1,1,3]),s,sep="")
s <- paste(intToChar(J[1,nc,3]),s,sep="")
s <- paste(intToChar(J[nr,1,3]),s,sep="")
s <- paste(intToChar(J[nr,nc,3]),s,sep="")
unlist(as.numeric(s))
}

> EmbedMessageLSB
function (I,m)
###########################################
#EmbedMessageLSB
#This function embed a message in an image
#using the LSB technique.
###########################################
{
s <- binaryRep(m)
l <- length(s)
m <- dim(I)[1]
n <- dim(I)[2]
if(l <= 3*(m-2)*n)
{
J <- EmbedMessageLength(I,l)



k <- ceiling(l/3)
J[2:(m-1)„1] <- EmbedMessageMatrixLSB(J[2:(m-1)„1],s[1:k])
if(k < l)
{
J[2:(m-1)„2] <- EmbedMessageMatrixLSB(J[2:(m-1)„2],s[(k+1):(2*k)])
if(2*k < l)
{
J[2:(m-1)„3] <- EmbedMessageMatrixLSB(J[2:(m-1)„3],s[(2*k+1):l])
}
}
}
else
{
J <- "Error: length of message surpass image dimension
}
J
}

> EmbedMessageMatrixLSB
function (i,s)
#########################################
#EmbedMessageMatrixLSB
#This function embed a message into a
#channel.
#########################################
{
l <- length(s)
m <- nrow(i)
n <- ncol(i)
k <- floor(m*n/l)
ind <- seq(1,m*n,k)[1:l]
jj <- c(t(i))
j <- ToBin(jj[ind]*255,8)
j[,8] <- s
jj[ind] <- ToInt(j)/255.0
JJ <- matrix(jj,ncol=n,nrow=m,byrow=TRUE)
JJ
}

function (I)
###########################################
#ExtractMessageLSB
#This function extract a message from a
#channel using the LSB technique.
###########################################
{



l <- ExtractMessageLength(I)
m <- dim(I)[1]
n <- dim(I)[2]
k <- ceiling(l/3)
k1 <- floor((m-2)*n/k)
ind1 <- seq(1,(m-2)*n,k1)[1:k]
M <- ToBin(c(t(I[2:(m-1)„1]))[ind1]*255,8)[,8]
if(k < l)
{
k2 <- k1
ind2 <- ind1
M <- c(M,ToBin(c(t(I[2:(m-1)„2]))[ind2]*255,8)[,8])
if(2*k < l)
{
k3 <- floor((m-2)*n/(l-2*k))
ind3 <- seq(1,(m-2)*n,k3)[1:(l-2*k)]
M <- c(M,ToBin(c(t(I[2:(m-1)„3]))[ind3]*255,8)[,8])
}
}
Paste(intToChar(ToInt(matrix(M,nrow = l/8,ncol=8,byrow=TRUE))))
}

function (m)
########################################
#binaryRep
#This function returns a binary string
#representing the message m. First, each
#character is converted to an integer
#(ascii code). These integers are
#converted to binary strings of length 8
#returning a string of all binary rep
#in an array.
########################################
{
c(t(ToBin(charToInt(unlist(strsplit(m,split=NULL))),8)))
}

> ToInt
function (M)
########################################
#ToInt
#ToInt is a modified version of toInt. This accepts arrays of binary strings
########################################
{
res <- c()
for (i in 1:nrow(M))



{
res <- c(res,toInt(M[i,]))
}
res
}

> ToBin
function (a, n)
########################################
#ToBin
#ToBin is a modified version of toBin. This accepts arrays of binary strings
########################################
{
a <- as.integer(a)
n <- as.integer(n)
if (n == 0)
res <- c()
else {
res <- matrix(nrow=length(a), ncol=n)
for (i in 1:n)
{
res[,i] <- aa <- a}
}
res
}



bc2p 
function (y,d,mn,xl,yl,ty)  
{ 
        nr <- dim(x)[1]/8 
        nc <- dim(x)[2]/8 
        V <- array(dim=c(nr,nc,3)) 
        x <- DCTc(y) 
        for(i in 1 nr) 
        { 
                for(j in 1:nc) 
                { 
                        ri <- 8*(i-1)+1 
                        rf <- 8*i 
                        ci <- 8*(j-1)+1 
                        cf <- 8*j 
                        dctc8 <- c(x[ri:rf,ci:cf]) 
                        m <- min(dctc8) 
                        M <- max(dctc8) 
                        k1 <- floor((m+d/2)/d) 
                        k2 <- ceiling((M-d/2)/d) 
                        cc <- c() 
                        for(l in k1:k2) 
                        { 
                                cc <- c(cc,length(chi(dctc8,l,d))) 
                        } 
                        v <- Chi2Prob(cc) 
                        for(k in 1:3) 
                        { 
                                V[i,j,k] <- v[k] 
                        } 
                } 
        } 
        plot(V[,,3][V[,,3]!="NaN"],type=ty,main=mn,xlab=xl,ylab=yl) 
} 
 
bc2ptest 
function (y,d)  
{ 
        nr <- dim(y)[1]/8 
        nc <- dim(y)[2]/8 
        V <- array(dim=c(nr,nc,3)) 
        x <- DCTc(y) 
        for(i in 1 nr) 
        { 
                for(j in 1:nc) 
                { 
                        ri <- 8*(i-1)+1 
                        rf <- 8*i 
                        ci <- 8*(j-1)+1 
                        cf <- 8*j 
                        if(d!=0) 
                        { 
                                k1 <- freqlowerbound(min(x[ri:rf,ci:cf]),d) 
                                k2 <- frequpperbound(max(x[ri:rf,ci:cf]),d) 



                        } 
                        cc <- c() 
                        for(l in k1:k2) 
                        { 
                                cc <- c(cc,length(chi(x[ri:rf,ci:cf],l,d))) 
                        } 
                        V[i,j,1:3] <- Chi2Prob(cc) 
                } 
        } 
        V 
} 
 
bc2ptest2 
function (y,d)  
{ 
        nr <- dim(y)[1]/8 
        nc <- dim(y)[2]/8 
        V <- array(dim=c(nr,nc,3)) 
        x <- DCTc(y) 
        cc <- c() 
        for(i in 1 nr) 
        { 
                for(j in 1:nc) 
                { 
                        ri <- 8*(i-1)+1 
                        rf <- 8*i 
                        ci <- 8*(j-1)+1 
                        cf <- 8*j 
                        if(d!=0) 
                        { 
                                k1 <- freqlowerbound(x[ri:rf,ci:cf],d)[2] 
                                k2 <- frequpperbound(x[ri rf,ci:cf],d)[2] 
                        } 
                        for(l in k1:k2) 
                        { 
                                cc <- c(cc,length(chi(x[ri:rf,ci:cf],l,d))) 
                        } 
                } 
        } 
        cc 
} 
 
binaryRep 
function (m) 
######################################## 
#binaryRep 
#This function returns a binary string 
#representing the message m. First, each 
#character is converted to an integer 
#(ascii code). These integers are 
#converted to binary strings of length 8 
#returning a string of all binary rep 
#in an array. 
######################################## 



{ 
        c(t(ToBin(charToInt(unlist(strsplit(m,split=NULL))),8)))  
} 
 
BlockChi2Prob 
function (x)  
################################################# 
#BlockChi2Prob 
#BlockChi2Prob returns the probability of 
#embedding for each block 
################################################# 
{ 
        nr <- dim(x)[1]/8 
        nc <- dim(x)[2]/8 
        V <- array(dim=c(nr,nc,3)) 
        dt <- DCTc(x) 
        for(i in 1 nr) 
        { 
                for(j in 1:nc) 
                { 
                        ri <- 8*(i-1)+1 
                        rf <- 8*i 
                        ci <- 8*(j-1)+1 
                        cf <- 8*j 
                        v <- Chi2Prob(table(dt[ri:rf,ci:cf])) 
                        for(k in 1:3) 
                        { 
                                V[i,j,k] <- v[k] 
                        } 
                } 
        } 
        V 
} 
 
BlockChi2Prob2 
function (x)  
{ 
        nr <- dim(x)[1]/8 
        nc <- dim(x)[2]/8 
        V <- array(dim=c(nr,nc,3)) 
        for(i in 1 nr) 
        { 
                for(j in 1:nc) 
                { 
                        ri <- 8*(i-1)+1 
                        rf <- 8*i 
                        ci <- 8*(j-1)+1 
                        cf <- 8*j 
                        v <- Chi2Prob2(x[ri:rf,ci:cf]*255) 
                        for(k in 1:3) 
                        { 
                                V[i,j,k] <- v[k] 
                        } 
                } 



        } 
        V 
} 
 
BlockChi2Value 
function (x)  
{ 
        nr <- dim(x)[1]/8 
        nc <- dim(x)[2]/8 
        chisqvalues <- matrix(nrow=nr,ncol=nc) 
        for(i in 1 nr) 
        { 
                for(j in 1:nc) 
                { 
                        ri <- 8*(i-1)+1 
                        rf <- 8*i 
                        ci <- 8*(j-1)+1 
                        cf <- 8*j 
                        chisqvalues[i,j] <- Chi2Value(x[ri:rf,ci:cf]*255) 
                } 
        } 
        chisqvalues              
} 
 
BlockChi2Value2 
function (x)  
{ 
        nr <- dim(x)[1]/8 
        nc <- dim(x)[2]/8 
        chisqvalues <- matrix(nrow=nr,ncol=nc) 
        for(i in 1 nr) 
        { 
                for(j in 1:nc) 
                { 
                        ri <- 8*(i-1)+1 
                        rf <- 8*i 
                        ci <- 8*(j-1)+1 
                        cf <- 8*j 
                        chisqvalues[i,j] <- Chi2Value2(x[ri:rf,ci:cf]*255) 
                } 
        } 
        chisqvalues              
} 
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Abstract 

In this ongoing research we study the problem of 
detecting the existence of a hidden message in an 
image. JPEG is the image format to work with, 
however, the study shall not be limited to this type. 
Many techniques for detecting embedded messages 
have been proposed. First, we study different 
mechanisms of embedding and how these affected 
randomness. We implemented different programs 
developed in the R-language. Methods of embedding 
were considered from very simple to more complex 
using the LSB technique, spreading and an equal 
distribution of a message between channels. We 
study two statistical approaches for the steganalysis. 
First, we study the ߯ଶ statistical test which works on 
the concept adjacent DCT-coefficients frequencies. 
Second, we also study the likelihood ratio test (LRT) 
for the implementation of the Quantization Index 
Modulation (QIM) and the Dither Modulation (DM) 
to study the Least Significant Bits (LSB) embedding 
technique. The LSB is the focus of our study since 
their modification cannot be perceived by the human 
eye, i.e. its modification raises no significant 
attention. We calculate DCT-coefficients matrices 
using block diagonal matrices to overcome the use of 
loops. Some codes were written using R-language to 
study and obtain some results to analyze DCT 
coefficients frequencies. Even more, we use the 
concept of the QIM for the quantized values obtained 
by grouping the DCT coefficients. 
Keywords: Steganography, steganalysis, LSB, DCT, 
QIM, Shannon's entropy, R language, χ2-test 

 
Introduction 

The object of steganography is to hide the fact that 
some sort of communication is taking place. This is 
the ground for the use of the Least Significant Bit. 
The modification of a bit in a pixel will have an 
impact on the level of visual perception. As we move 
along the binary representation from the least 
significant to the more significant visually we will be 
able to perceive that a change has taken place. For 
example, Figure 2 is the result of changing the 8th bit 
in the binary representation for each color from 
Figure 1. Note that each pixel is represented by a 
string of 8 bits in a monochrome picture and 24 in a 
RGB picture. From black to white, we have 28 = 256 
different tones of gray. In a RGB image we have 2563 
= 16,777,216 (256 for each color). 
 
Now, any visual insight of the existence of a 
modification leads steganography failure. 

In reality, no such modification shall be perceptible 
by the human eye. 
 

 
Figure 1. Original 

 

 
Figure 2. Modification of the 8th bit per pixel 

 
Methodology 

In order to achieve images modification we 
construct our own codes. Below a code written in R-
language uses the LSB modification technique. 
function (I,m){ 
  s <- binaryRep(m) 
  l <- length(s) 
  m <- dim(I)[1] 
  n <- dim(I)[2] 
  ch <- dim(I)[3] 
  z <- ch*(m-2)*n 
  if(l <= z) { 
    J <- EmbedMessageLength(I,l) 
    k <- ceiling(l/ch) 
    J[2 (m-1),,1] <- EmbedMessageMatrixLSB(J[2:(m-1),,1],s[1:k]) 
    if(k < l){ 
       J[2:(m-1),,2] 
          <- EmbedMessageMatrixLSB(J[2:(m-1),,2],s[(k+1):(2*k)]) 
       if((2*k) < l) { 
         J[2:(m-1),,3]  
          <- EmbedMessageMatrixLSB(J[2:(m-1),,3],s[(2*k+1) l]) 
       } 
    } 
 } 
 else{ 
   J <- "Error: length of message surpass image dimension" 
 }  
return J 
} 

There are many approaches being used to detect 
stego images. Discrete Cosine Transforms play a 
crucial role in many of these techniques. The DCT 
matrix is a special case of the Discrete Fourier 
Transforms. A version of the DCT used in our 
research is 

௜ܶ௝ = ଵ
√ଶே

C(i)C(j)∑ ∑ ݉௫௬݀ேሺݔ, ݅ሻ݀ேሺݕ, ݆ሻேିଵ
௬ୀ଴

ேିଵ
௫ୀ଴  

where 

C(n) = ቊ
ଵ

√ଶே
݂݅ ݊ ൌ 0

1 ݂݅ ݊ ൐ 0
, ݀ேሺݔ, ݅ሻ ൌ ݏ݋ܿ ቂሺଶ௔ାଵሻ௕గ

ଶே
ቃ 

and ݉௫௬ are the entries from a matrix M, and T = 
ሺ ௜ܶ௝ሻ௜௝, an orthogonal matrix. We construct the DCT 
coefficients matrix for Dxy by taking the matrix 
product TMxyT'. The matrix Mxy is being transformed 
previously to the DCT domain,  (symmetric about 
0). We also construct block diagonal matrices to 
obtain the image DCT coefficients. These block 
diagonal matrices are of the form (d = dimension 
squared) 

ௗܶ ൌ 	

ۏ
ێ
ێ
ێ
ۍ
ܶ 0 0
0 ܶ 0
0 0 ܶ

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ ےܶ

ۑ
ۑ
ۑ
ې

ௗ

  

so that a particular form of DCT coefficient image is 
obtained by ܦ ൌ ௟ܶܯ ௥ܶ

ᇱ, where D = (Dxy)xy and M = 
(Mxy)xy. 
 
One approach is that the frequency of the DCT 
coefficients is being affected by the presence of an 
encrypted hidden message. Given ܿ௜ and ܿ௜∗ the 
frequencies of the color indices previous and after 
the embedding, respectively can be described by 

|ܿଶ௜ െ ܿଶ௜ାଵ| ൒ |ܿଶ௜∗ െ ܿଶ௜ାଵ∗ |. 
By considering the DCT coefficients frequencies 

ݔ ൌ ∑ ൫௬೔ି௬೔
∗൯మ

௬೔
∗

௩ାଵ
௜ ∗௜ݕ , ൌ

௡మ೔ା௡మ೔శభ
ଶ

 and ݕ௜ ൌ ݊ଶ௜,  
݊௜ the frequencies of the DCT coefficients in a 
region. 
 
Given that x approximate to a ߯ଶ rv, we may obtain 
the probability of embedding p = P(߯ଶ ൐  ሻ.  Figureݔ
3 shows the probabilities of embedding for different 
regions (8x8 sequential blocks) using the image in 
Figure 1 to embed 6Napolen.txt from 
http://www.textfiles.com/stories/. 
 
To detect stego images we may use the (QIM). 
Given a host signal x, with pmf PX, message m and a 
mapping s(x,m), an ensemble of discontinuous 
functions have the strength of embedding by 
minimizing the distortion, ܦሺݏ, ሻݔ ൌ ଵ

ே
ݏ‖ െ  .ଶ‖ݔ

 
Figure 3. Probabilities per Sequential 8 x 8 Blocks 

 
These discontinuities allow us to define the quantized values for a 
given ∆∗൐ ௞ݔ .0 ൌ ݇∆∗, where k is an integer. Let us define set 
Α୼∗ ൌ ሼ݇∆∗: ,ሽ and ߯ሺܽݎ݁݃݁ݐ݊݅	݊ܽ	ݏ݅	݇ Δ∗ሻ ൌ ቂܽ െ ∆∗

ଶ
, ܽ ൅ ∆∗

ଶ
ቁ. 

The pmf of the quantized cover, ݔ௤ ∈ Α୼∗, without embedding is 
given by ௑ܲ೜ሺܽሻ ൌ ∑ ௑ܲሺݔሻ௫∈ఞሺ௔,୼∗ሻ . Analogously, the pmf of the 
quantized embedding, ݔொூெ ∈ Α∆, ௑ܲೂ಺ಾሺܽሻ ൌ

ଵ
ଶ
∑ ௑ܲሺݔሻ௫∈ఞሺ௔,∆ሻ , 

where  ∆ൌ 2∆∗, ܽ ∈ Α∆.  
 

Conclusions 
These probabilities lead us to the Ratio Likelihood Test and to the 
Shannon Entropy. Given pb (qb =1- pb), the probability of 
embedding per block, ܾ ∈  and assuming a ,(the space of blocks) ܤ
uniform distribution, i.e., P(b) = p for	ܾ ∈  the entropy may be ,ܤ
obtain by 

H(I) = െ∑ ሾ݌௕ ሽሿ௕∈஻݌௕݌logሼ݌ െ ∑ ሾݍ௕݌log	ሼݍ௕݌ሽሿ௕∈஻ . 
The latter result is to be studied. 
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